; Copyright 2015 Egor Tensin <Egor.Tensin@gmail.com>
; This file is licensed under the terms of the MIT License.
; See LICENSE.txt for details.
.586
.xmm
.model flat
.data
align 10h
key_schedule oword 11 dup(0)
align 10h
inverted_key_schedule oword 11 dup(0)
.code
@raw_aes128ecb_encrypt@32 proc
call expand_keys128
pxor xmm0, [key_schedule]
aesenc xmm0, [key_schedule + 10h]
aesenc xmm0, [key_schedule + 20h]
aesenc xmm0, [key_schedule + 30h]
aesenc xmm0, [key_schedule + 40h]
aesenc xmm0, [key_schedule + 50h]
aesenc xmm0, [key_schedule + 60h]
aesenc xmm0, [key_schedule + 70h]
aesenc xmm0, [key_schedule + 80h]
aesenc xmm0, [key_schedule + 90h]
aesenclast xmm0, [key_schedule + 0A0h]
ret
@raw_aes128ecb_encrypt@32 endp
@raw_aes128ecb_decrypt@32 proc
call expand_keys128
pxor xmm0, [inverted_key_schedule]
aesdec xmm0, [inverted_key_schedule + 10h]
aesdec xmm0, [inverted_key_schedule + 20h]
aesdec xmm0, [inverted_key_schedule + 30h]
aesdec xmm0, [inverted_key_schedule + 40h]
aesdec xmm0, [inverted_key_schedule + 50h]
aesdec xmm0, [inverted_key_schedule + 60h]
aesdec xmm0, [inverted_key_schedule + 70h]
aesdec xmm0, [inverted_key_schedule + 80h]
aesdec xmm0, [inverted_key_schedule + 90h]
aesdeclast xmm0, [inverted_key_schedule + 0A0h]
ret
@raw_aes128ecb_decrypt@32 endp
expand_keys128 proc
; A "word" (in terms of the FIPS 187 standard) is a 32-bit block.
; Words are denoted by `w[N]`.
;
; A key schedule is composed of 10 "regular" keys and a dumb key for
; the "whitening" step.
; It's stored in `key_schedule`.
;
; A key schedule is thus composed of 44 "words".
; The FIPS standard includes an algorithm to calculate these words via
; a simple loop:
;
; i = 4
; while i < 44:
; temp = w[i - 1]
; if i % 4 == 0:
; temp = SubWord(RotWord(temp))^Rcon
; w[i] = w[i - 4]^temp
; i = i + 1
;
; The loop above may be unrolled like this:
;
; w[4] = SubWord(RotWord(w[3]))^Rcon^w[0]
; w[5] = w[4]^w[1]
; = SubWord(RotWord(w[3]))^Rcon^w[1]^w[0]
; w[6] = w[5]^w[2]
; = SubWord(RotWord(w[3]))^Rcon^w[2]^w[1]^w[0]
; w[7] = w[6]^w[3]
; = SubWord(RotWord(w[3]))^Rcon^w[3]^w[2]^w[1]^w[0]
; w[8] = SubWord(RotWord(w[7]))^Rcon^w[4]
; w[9] = w[8]^w[5]
; = SubWord(RotWord(w[7]))^Rcon^w[5]^w[4]
; w[10] = w[9]^w[6]
; = SubWord(RotWord(w[7]))^Rcon^w[6]^w[5]^w[4]
; w[11] = w[10]^w[7]
; = SubWord(RotWord(w[7]))^Rcon^w[7]^w[6]^w[5]^w[4]
;
; ... and so on.
;
; The Intel AES-NI instruction set facilitates calculating SubWord
; and RotWord using `aeskeygenassist`, which is used in this routine.
;
; Preconditions:
; * xmm1[127:96] == w[3],
; * xmm1[95:64] == w[2],
; * xmm1[63:32] == w[1],
; * xmm1[31:0] == w[0].
movdqa [key_schedule], xmm1 ; sets w[0], w[1], w[2], w[3]
lea ecx, [key_schedule + 10h] ; ecx = &w[4]
aeskeygenassist xmm7, xmm1, 01h ; xmm7[127:96] = RotWord(SubWord(w[3]))^Rcon
call gen_round_key ; sets w[4], w[5], w[6], w[7]
aeskeygenassist xmm7, xmm1, 02h ; xmm7[127:96] = RotWord(SubWord(w[7]))^Rcon
call gen_round_key ; sets w[8], w[9], w[10], w[11]
aeskeygenassist xmm7, xmm1, 04h ; xmm7[127:96] = RotWord(SubWord(w[11]))^Rcon
call gen_round_key ; sets w[12], w[13], w[14], w[15]
aeskeygenassist xmm7, xmm1, 08h ; xmm7[127:96] = RotWord(SubWord(w[15]))^Rcon
call gen_round_key ; sets w[16], w[17], w[18], w[19]
aeskeygenassist xmm7, xmm1, 10h ; xmm7[127:96] = RotWord(SubWord(w[19]))^Rcon
call gen_round_key ; sets w[20], w[21], w[22], w[23]
aeskeygenassist xmm7, xmm1, 20h ; xmm7[127:96] = RotWord(SubWord(w[23]))^Rcon
call gen_round_key ; sets w[24], w[25], w[26], w[27]
aeskeygenassist xmm7, xmm1, 40h ; xmm7[127:96] = RotWord(SubWord(w[27]))^Rcon
call gen_round_key ; sets w[28], w[29], w[30], w[31]
aeskeygenassist xmm7, xmm1, 80h ; xmm7[127:96] = RotWord(SubWord(w[31]))^Rcon
call gen_round_key ; sets w[32], w[33], w[34], w[35]
aeskeygenassist xmm7, xmm1, 1Bh ; xmm7[127:96] = RotWord(SubWord(w[35]))^Rcon
call gen_round_key ; sets w[36], w[37], w[38], w[39]
aeskeygenassist xmm7, xmm1, 36h ; xmm7[127:96] = RotWord(SubWord(w[39]))^Rcon
call gen_round_key ; sets w[40], w[41], w[42], w[43]
call invert_key_schedule
ret
gen_round_key:
; Preconditions:
; * xmm1[127:96] == w[i+3],
; * xmm1[95:64] == w[i+2],
; * xmm1[63:32] == w[i+1],
; * xmm1[31:0] == w[i],
; * xmm7[127:96] == RotWord(SubWord(w[i+3]))^Rcon,
; * ecx == &w[i+4].
;
; Postconditions:
; * xmm1[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i],
; * xmm1[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i],
; * xmm1[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i],
; * xmm1[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i],
; * ecx == &w[i+8],
; * the value in xmm6 is also modified.
; Calculate
; w[i+3]^w[i+2]^w[i+1]^w[i],
; w[i+2]^w[i+1]^w[i],
; w[i+1]^w[i] and
; w[i].
movdqa xmm6, xmm1 ; xmm6 = xmm1
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
; xmm1[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i]
; xmm1[95:64] == w[i+2]^w[i+1]^w[i]
; xmm1[63:32] == w[i+1]^w[i]
; xmm1[31:0] == w[i]
; Calculate
; w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i],
; w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i],
; w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] and
; w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i].
pshufd xmm6, xmm7, 0FFh ; xmm6[127:96] = xmm6[95:64] = xmm6[63:32] = xmm6[31:0] = xmm7[127:96]
pxor xmm1, xmm6 ; xmm1 ^= xmm6
; xmm1[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i]
; xmm1[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i]
; xmm1[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i]
; xmm1[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i]
; Set w[i+4], w[i+5], w[i+6] and w[i+7].
movdqa [ecx], xmm1 ; w[i+7] = RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i]
; w[i+6] = RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i]
; w[i+5] = RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i]
; w[i+4] = RotWord(SubWord(w[i+3]))^Rcon^w[i]
add ecx, 10h ; ecx = &w[i+8]
ret
invert_key_schedule:
movdqa xmm7, [key_schedule]
movdqa xmm6, [key_schedule + 0A0h]
movdqa [inverted_key_schedule], xmm6
movdqa [inverted_key_schedule + 0A0h], xmm7
aesimc xmm7, [key_schedule + 10h]
aesimc xmm6, [key_schedule + 90h]
movdqa [inverted_key_schedule + 10h], xmm6
movdqa [inverted_key_schedule + 90h], xmm7
aesimc xmm7, [key_schedule + 20h]
aesimc xmm6, [key_schedule + 80h]
movdqa [inverted_key_schedule + 20h], xmm6
movdqa [inverted_key_schedule + 80h], xmm7
aesimc xmm7, [key_schedule + 30h]
aesimc xmm6, [key_schedule + 70h]
movdqa [inverted_key_schedule + 30h], xmm6
movdqa [inverted_key_schedule + 70h], xmm7
aesimc xmm7, [key_schedule + 40h]
aesimc xmm6, [key_schedule + 60h]
movdqa [inverted_key_schedule + 40h], xmm6
movdqa [inverted_key_schedule + 60h], xmm7
aesimc xmm7, [key_schedule + 50h]
movdqa [inverted_key_schedule + 50h], xmm7
ret
expand_keys128 endp
end