; Copyright 2015 Egor Tensin <Egor.Tensin@gmail.com>
; This file is licensed under the terms of the MIT License.
; See LICENSE.txt for details.
.586
.xmm
.model flat
.data
align 10h
key_schedule oword 15 dup(0)
align 10h
inverse_key_schedule oword 15 dup(0)
.code
@raw_aes256ecb_encrypt@48 proc
call expand_keys256
pxor xmm0, [key_schedule]
aesenc xmm0, [key_schedule + 10h]
aesenc xmm0, [key_schedule + 20h]
aesenc xmm0, [key_schedule + 30h]
aesenc xmm0, [key_schedule + 40h]
aesenc xmm0, [key_schedule + 50h]
aesenc xmm0, [key_schedule + 60h]
aesenc xmm0, [key_schedule + 70h]
aesenc xmm0, [key_schedule + 80h]
aesenc xmm0, [key_schedule + 90h]
aesenc xmm0, [key_schedule + 0A0h]
aesenc xmm0, [key_schedule + 0B0h]
aesenc xmm0, [key_schedule + 0C0h]
aesenc xmm0, [key_schedule + 0D0h]
aesenclast xmm0, [key_schedule + 0E0h]
ret
@raw_aes256ecb_encrypt@48 endp
@raw_aes256cbc_encrypt@52 proc
pxor xmm0, [ecx]
jmp @raw_aes256ecb_encrypt@48
@raw_aes256cbc_encrypt@52 endp
@raw_aes256ecb_decrypt@48 proc
call expand_keys256
pxor xmm0, [inverse_key_schedule]
aesdec xmm0, [inverse_key_schedule + 10h]
aesdec xmm0, [inverse_key_schedule + 20h]
aesdec xmm0, [inverse_key_schedule + 30h]
aesdec xmm0, [inverse_key_schedule + 40h]
aesdec xmm0, [inverse_key_schedule + 50h]
aesdec xmm0, [inverse_key_schedule + 60h]
aesdec xmm0, [inverse_key_schedule + 70h]
aesdec xmm0, [inverse_key_schedule + 80h]
aesdec xmm0, [inverse_key_schedule + 90h]
aesdec xmm0, [inverse_key_schedule + 0A0h]
aesdec xmm0, [inverse_key_schedule + 0B0h]
aesdec xmm0, [inverse_key_schedule + 0C0h]
aesdec xmm0, [inverse_key_schedule + 0D0h]
aesdeclast xmm0, [inverse_key_schedule + 0E0h]
ret
@raw_aes256ecb_decrypt@48 endp
@raw_aes256cbc_decrypt@52 proc
push ecx
call @raw_aes256ecb_decrypt@48
pop ecx
pxor xmm0, [ecx]
ret
@raw_aes256cbc_decrypt@52 endp
expand_keys256 proc
; A "word" (in terms of the FIPS 187 standard) is a 32-bit block.
; Words are denoted by `w[N]`.
;
; A key schedule is composed of 14 "regular" keys and a dumb key for
; the "whitening" step.
; It's stored in `key_schedule`.
;
; A key schedule is thus composed of 60 "words".
; The FIPS standard includes an algorithm to calculate these words via
; a simple loop:
;
; i = 8
; while i < 60:
; temp = w[i - 1]
; if i % 8 == 0:
; temp = SubWord(RotWord(temp))^Rcon
; elif i % 8 == 4:
; temp = SubWord(temp)
; w[i] = w[i - 8]^temp
; i = i + 1
;
; The loop above may be unrolled like this:
;
; w[8] = SubWord(RotWord(w[7]))^Rcon^w[0]
; w[9] = w[8]^w[1]
; = SubWord(RotWord(w[7]))^Rcon^w[1]^w[0]
; w[10] = w[9]^w[2]
; = SubWord(RotWord(w[7]))^Rcon^w[2]^w[1]^w[0]
; w[11] = w[10]^w[3]
; = SubWord(RotWord(w[7]))^Rcon^w[3]^w[2]^w[1]^w[0]
; w[12] = SubWord(w[11])^w[4]
; w[13] = w[12]^w[5]
; = SubWord(w[11])^w[5]^w[4]
; w[14] = w[13]^w[6]
; = SubWord(w[11])^w[6]^w[5]^w[4]
; w[15] = w[14]^w[7]
; = SubWord(w[11])^w[7]^w[6]^w[5]^w[4]
; w[16] = SubWord(RotWord(w[15]))^Rcon^w[8]
; w[17] = w[16]^w[9]
; = SubWord(RotWord(w[15]))^Rcon^w[9]^w[8]
; w[18] = w[17]^w[10]
; = SubWord(RotWord(w[15]))^Rcon^w[10]^w[9]^w[8]
; w[19] = w[18]^w[11]
; = SubWord(RotWord(w[15]))^Rcon^w[11]^w[10]^w[9]^w[8]
; w[20] = SubWord(w[19])^w[12]
; w[21] = w[20]^w[13]
; = SubWord(w[19])^w[13]^w[12]
; w[22] = w[21]^w[14]
; = SubWord(w[19])^w[14]^w[13]^w[12]
; w[23] = w[22]^w[15]
; = SubWord(w[19])^w[15]^w[14]^w[13]^w[12]
;
; ... and so on.
;
; The Intel AES-NI instruction set facilitates calculating SubWord
; and RotWord using `aeskeygenassist`, which is used in this routine.
;
; Preconditions:
; * xmm2[127:96] == w[7],
; * xmm2[95:64] == w[6],
; * xmm2[63:32] == w[5],
; * xmm2[31:0] == w[4],
; * xmm1[127:96] == w[3],
; * xmm1[95:64] == w[2],
; * xmm1[63:32] == w[1],
; * xmm1[31:0] == w[0].
movdqa [key_schedule], xmm1 ; sets w[0], w[1], w[2], w[3]
movdqa [key_schedule + 10h], xmm2 ; sets w[4], w[5], w[6], w[7]
lea ecx, [key_schedule + 20h] ; ecx = &w[8]
aeskeygenassist xmm7, xmm2, 1h ; xmm7[127:96] = RotWord(SubWord(w[7]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[8], w[9], w[10], w[11]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[11])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[12], w[13], w[14], w[15]
aeskeygenassist xmm7, xmm2, 2h ; xmm7[127:96] = RotWord(SubWord(w[15]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[16], w[17], w[18], w[19]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[19])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[20], w[21], w[22], w[23]
aeskeygenassist xmm7, xmm2, 4h ; xmm7[127:96] = RotWord(SubWord(w[23]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[24], w[25], w[26], w[27]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[27])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[28], w[29], w[30], w[31]
aeskeygenassist xmm7, xmm2, 8h ; xmm7[127:96] = RotWord(SubWord(w[31]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[32], w[33], w[34], w[35]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[35])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[36], w[37], w[38], w[39]
aeskeygenassist xmm7, xmm2, 10h ; xmm7[127:96] = RotWord(SubWord(w[39]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[40], w[41], w[42], w[43]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[43])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[44], w[45], w[46], w[47]
aeskeygenassist xmm7, xmm2, 20h ; xmm7[127:96] = RotWord(SubWord(w[47]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[48], w[49], w[50], w[51]
aeskeygenassist xmm7, xmm2, 0 ; xmm7[95:64] = SubWord(w[51])
pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64]
call gen_round_key ; sets w[52], w[53], w[54], w[55]
aeskeygenassist xmm7, xmm2, 40h ; xmm7[127:96] = RotWord(SubWord(w[55]))^Rcon
pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96]
call gen_round_key ; sets w[56], w[57], w[58], w[59]
call invert_key_schedule
ret
gen_round_key:
; Preconditions:
; * xmm2[127:96] == w[i+7],
; * xmm2[95:64] == w[i+6],
; * xmm2[63:32] == w[i+5],
; * xmm2[31:0] == w[i+4],
; * xmm1[127:96] == w[i+3],
; * xmm1[95:64] == w[i+2],
; * xmm1[63:32] == w[i+1],
; * xmm1[31:0] == w[i],
; * xmm7[127:96] == xmm7[95:64] == xmm7[63:32] == xmm7[31:0] == HWGEN,
; where HWGEN is either RotWord(SubWord(w[i+7]))^Rcon or SubWord(w[i+7]),
; depending on the number of the round being processed,
; * ecx == &w[i+8].
;
; Postconditions:
; * xmm2[127:96] == w[i+11] == HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i],
; * xmm2[95:64] == w[i+10] == HWGEN^w[i+2]^w[i+1]^w[i],
; * xmm2[63:32] == w[i+9] == HWGEN^w[i+1]^w[i],
; * xmm2[31:0] == w[i+8] == HWGEN^w[i],
; * xmm1[127:96] == w[i+7],
; * xmm1[95:64] == w[i+6],
; * xmm1[63:32] == w[i+5],
; * xmm1[31:0] == w[i+4],
; * ecx == &w[i+12],
; * the value in xmm6 is also modified.
; Calculate
; w[i+3]^w[i+2]^w[i+1]^w[i],
; w[i+2]^w[i+1]^w[i],
; w[i+1]^w[i] and
; w[i].
movdqa xmm6, xmm1 ; xmm6 = xmm1
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
pslldq xmm6, 4 ; xmm6 <<= 32
pxor xmm1, xmm6 ; xmm1 ^= xmm6
; xmm1[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i]
; xmm1[95:64] == w[i+2]^w[i+1]^w[i]
; xmm1[63:32] == w[i+1]^w[i]
; xmm1[31:0] == w[i]
; Calculate
; HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i],
; HWGEN^w[i+2]^w[i+1]^w[i],
; HWGEN^w[i+1]^w[i] and
; HWGEN^w[i].
pxor xmm1, xmm7 ; xmm1 ^= xmm7
; xmm1[127:96] == w[i+11] == HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i]
; xmm1[95:64] == w[i+10] == HWGEN^w[i+2]^w[i+1]^w[i]
; xmm1[63:32] == w[i+9] == HWGEN^w[i+1]^w[i]
; xmm1[31:0] == w[i+8] == HWGEN^w[i]
; Set w[i+8], w[i+9], w[i+10] and w[i+11].
movdqa [ecx], xmm1 ; w[i+8] = HWGEN^w[i]
; w[i+9] = HWGEN^w[i+1]^w[i]
; w[i+10] = HWGEN^w[i+2]^w[i+1]^w[i]
; w[i+11] = HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i]
add ecx, 10h ; ecx = &w[i+12]
; Swap the values in xmm1 and xmm2.
pxor xmm1, xmm2
pxor xmm2, xmm1
pxor xmm1, xmm2
ret
invert_key_schedule:
movdqa xmm7, [key_schedule ]
movdqa xmm6, [key_schedule + 0E0h]
movdqa [inverse_key_schedule ], xmm6
movdqa [inverse_key_schedule + 0E0h], xmm7
aesimc xmm7, [key_schedule + 10h]
aesimc xmm6, [key_schedule + 0D0h]
movdqa [inverse_key_schedule + 10h], xmm6
movdqa [inverse_key_schedule + 0D0h], xmm7
aesimc xmm7, [key_schedule + 20h]
aesimc xmm6, [key_schedule + 0C0h]
movdqa [inverse_key_schedule + 20h], xmm6
movdqa [inverse_key_schedule + 0C0h], xmm7
aesimc xmm7, [key_schedule + 30h]
aesimc xmm6, [key_schedule + 0B0h]
movdqa [inverse_key_schedule + 30h], xmm6
movdqa [inverse_key_schedule + 0B0h], xmm7
aesimc xmm7, [key_schedule + 40h]
aesimc xmm6, [key_schedule + 0A0h]
movdqa [inverse_key_schedule + 40h], xmm6
movdqa [inverse_key_schedule + 0A0h], xmm7
aesimc xmm7, [key_schedule + 50h]
aesimc xmm6, [key_schedule + 90h]
movdqa [inverse_key_schedule + 50h], xmm6
movdqa [inverse_key_schedule + 90h], xmm7
aesimc xmm7, [key_schedule + 60h]
aesimc xmm6, [key_schedule + 80h]
movdqa [inverse_key_schedule + 60h], xmm6
movdqa [inverse_key_schedule + 80h], xmm7
aesimc xmm7, [key_schedule + 70h]
movdqa [inverse_key_schedule + 70h], xmm7
ret
expand_keys256 endp
end