diff options
Diffstat (limited to 'src/aes128.asm')
-rw-r--r-- | src/aes128.asm | 158 |
1 files changed, 121 insertions, 37 deletions
diff --git a/src/aes128.asm b/src/aes128.asm index b375daf..4f50e8f 100644 --- a/src/aes128.asm +++ b/src/aes128.asm @@ -49,49 +49,133 @@ inverted_key_schedule oword 11 dup(0) @raw_aes128ecb_decrypt@32 endp expand_keys_128ecb proc - lea ecx, [key_schedule + 10h] - movdqa [key_schedule], xmm1 - - aeskeygenassist xmm7, xmm1, 01h - call gen_round_key - aeskeygenassist xmm7, xmm1, 02h - call gen_round_key - aeskeygenassist xmm7, xmm1, 04h - call gen_round_key - aeskeygenassist xmm7, xmm1, 08h - call gen_round_key - aeskeygenassist xmm7, xmm1, 10h - call gen_round_key - aeskeygenassist xmm7, xmm1, 20h - call gen_round_key - aeskeygenassist xmm7, xmm1, 40h - call gen_round_key - aeskeygenassist xmm7, xmm1, 80h - call gen_round_key - aeskeygenassist xmm7, xmm1, 1Bh - call gen_round_key - aeskeygenassist xmm7, xmm1, 36h - call gen_round_key + ; A "word" (in terms of the FIPS 187 standard) is a 32-bit block. + ; Words are denoted by `w[N]`. + ; + ; A key schedule is composed of 10 "regular" keys and a dumb key for + ; the "whitening" step. + ; It's stored in `key_schedule`. + ; + ; A key schedule is thus composed of 44 "words". + ; The FIPS standard includes an algorithm to calculate these words via + ; a simple loop: + ; + ; i = 4 + ; while i < 44: + ; temp = w[i - 1] + ; if i % 4 == 0: + ; temp = SubWord(RotWord(temp))^Rcon + ; w[i] = w[i - 4]^temp + ; i = i + 1 + ; + ; The loop above may be unrolled like this: + ; + ; w[4] = SubWord(RotWord(w[3]))^Rcon^w[0] + ; w[5] = w[4]^w[1] + ; = SubWord(RotWord(w[3]))^Rcon^w[1]^w[0] + ; w[6] = w[5]^w[2] + ; = SubWord(RotWord(w[3]))^Rcon^w[2]^w[1]^w[0] + ; w[7] = w[6]^w[3] + ; = SubWord(RotWord(w[3]))^Rcon^w[3]^w[2]^w[1]^w[0] + ; w[8] = SubWord(RotWord(w[7]))^Rcon^w[4] + ; w[9] = w[8]^w[5] + ; = SubWord(RotWord(w[7]))^Rcon^w[5]^w[4] + ; w[10] = w[9]^w[6] + ; = SubWord(RotWord(w[7]))^Rcon^w[6]^w[5]^w[4] + ; w[11] = w[10]^w[7] + ; = SubWord(RotWord(w[7]))^Rcon^w[7]^w[6]^w[5]^w[4] + ; + ; ... and so on. + ; + ; The Intel AES-NI instruction set facilitates calculating SubWord + ; and RotWord using `aeskeygenassist`, which is used in this routine. + ; + ; Preconditions: + ; * xmm1[127:96] == w[3], + ; * xmm1[95:64] == w[2], + ; * xmm1[63:32] == w[1], + ; * xmm1[31:0] == w[0]. + + movdqa [key_schedule], xmm1 ; sets w[0], w[1], w[2], w[3] + + lea ecx, [key_schedule + 10h] ; ecx = &w[4] + aeskeygenassist xmm7, xmm1, 01h ; xmm7[127:96] = RotWord(SubWord(w[3]))^Rcon + call gen_round_key ; sets w[4], w[5], w[6], w[7] + aeskeygenassist xmm7, xmm1, 02h ; xmm7[127:96] = RotWord(SubWord(w[7]))^Rcon + call gen_round_key ; sets w[8], w[9], w[10], w[11] + aeskeygenassist xmm7, xmm1, 04h ; xmm7[127:96] = RotWord(SubWord(w[11]))^Rcon + call gen_round_key ; sets w[12], w[13], w[14], w[15] + aeskeygenassist xmm7, xmm1, 08h ; xmm7[127:96] = RotWord(SubWord(w[15]))^Rcon + call gen_round_key ; sets w[16], w[17], w[18], w[19] + aeskeygenassist xmm7, xmm1, 10h ; xmm7[127:96] = RotWord(SubWord(w[19]))^Rcon + call gen_round_key ; sets w[20], w[21], w[22], w[23] + aeskeygenassist xmm7, xmm1, 20h ; xmm7[127:96] = RotWord(SubWord(w[23]))^Rcon + call gen_round_key ; sets w[24], w[25], w[26], w[27] + aeskeygenassist xmm7, xmm1, 40h ; xmm7[127:96] = RotWord(SubWord(w[27]))^Rcon + call gen_round_key ; sets w[28], w[29], w[30], w[31] + aeskeygenassist xmm7, xmm1, 80h ; xmm7[127:96] = RotWord(SubWord(w[31]))^Rcon + call gen_round_key ; sets w[32], w[33], w[34], w[35] + aeskeygenassist xmm7, xmm1, 1Bh ; xmm7[127:96] = RotWord(SubWord(w[35]))^Rcon + call gen_round_key ; sets w[36], w[37], w[38], w[39] + aeskeygenassist xmm7, xmm1, 36h ; xmm7[127:96] = RotWord(SubWord(w[39]))^Rcon + call gen_round_key ; sets w[40], w[41], w[42], w[43] call invert_key_schedule ret gen_round_key: - movdqa xmm6, xmm1 ; xmm6 = key_schedule[i] - ; xmm6 = x3 x2 x1 x0 + ; Preconditions: + ; * xmm1[127:96] == w[i+3], + ; * xmm1[95:64] == w[i+2], + ; * xmm1[63:32] == w[i+1], + ; * xmm1[31:0] == w[i], + ; * xmm7[127:96] == RotWord(SubWord(w[i+3]))^Rcon, + ; * ecx == &w[i+4]. + ; + ; Postconditions: + ; * xmm1[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm1[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i], + ; * xmm1[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i], + ; * xmm1[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i], + ; * ecx == &w[i+8], + ; * the value in xmm6 is also modified. + + ; Calculate + ; w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+2]^w[i+1]^w[i], + ; w[i+1]^w[i] and + ; w[i]. + movdqa xmm6, xmm1 ; xmm6 = xmm1 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm1, xmm6 ; xmm1 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm1, xmm6 ; xmm1 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm1, xmm6 ; xmm1 ^= xmm6 + ; xmm1[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm1[95:64] == w[i+2]^w[i+1]^w[i] + ; xmm1[63:32] == w[i+1]^w[i] + ; xmm1[31:0] == w[i] + + ; Calculate + ; w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i], + ; w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] and + ; w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i]. + pshufd xmm6, xmm7, 0FFh ; xmm6[127:96] = xmm6[95:64] = xmm6[63:32] = xmm6[31:0] = xmm7[127:96] + pxor xmm1, xmm6 ; xmm1 ^= xmm6 + ; xmm1[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm1[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i] + ; xmm1[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] + ; xmm1[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i] + + ; Set w[i+4], w[i+5], w[i+6] and w[i+7]. + movdqa [ecx], xmm1 ; w[i+7] = RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i] + ; w[i+6] = RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i] + ; w[i+5] = RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] + ; w[i+4] = RotWord(SubWord(w[i+3]))^Rcon^w[i] + add ecx, 10h ; ecx = &w[i+8] - pslldq xmm6, 4 ; xmm6 = x2 x1 x0 0 - pxor xmm1, xmm6 ; xmm1 = (x3 x2) (x2 x1) (x1 x0) x0 - pslldq xmm6, 4 ; xmm6 = x1 x0 0 0 - pxor xmm1, xmm6 ; xmm1 = (x3 x2 x1) (x2 x1 x0) (x1 x0) x0 - pslldq xmm6, 4 ; xmm6 = x0 0 0 0 - pxor xmm1, xmm6 ; xmm1 = (x3 x2 x1 x0) (x2 x1 x0) (x1 x0) x0 - - pshufd xmm7, xmm7, 0FFh - pxor xmm1, xmm7 - - movdqa [ecx], xmm1 - add ecx, 10h ret invert_key_schedule: |