From 1429346822e56485acc4f4af4d1458e9df4115b9 Mon Sep 17 00:00:00 2001 From: Egor Tensin Date: Wed, 10 Jun 2015 05:13:30 +0300 Subject: src/aes*.asm -> src/asm/, src/aes*.c -> src/c/ --- src/asm/aes128.asm | 202 +++++++++++++++++++++++++++++++++++++ src/asm/aes192.asm | 248 ++++++++++++++++++++++++++++++++++++++++++++++ src/asm/aes256.asm | 286 +++++++++++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 736 insertions(+) create mode 100644 src/asm/aes128.asm create mode 100644 src/asm/aes192.asm create mode 100644 src/asm/aes256.asm (limited to 'src/asm') diff --git a/src/asm/aes128.asm b/src/asm/aes128.asm new file mode 100644 index 0000000..b49de0e --- /dev/null +++ b/src/asm/aes128.asm @@ -0,0 +1,202 @@ +; Copyright 2015 Egor Tensin +; This file is licensed under the terms of the MIT License. +; See LICENSE.txt for details. + +.586 +.xmm +.model flat + +.code + +@raw_aes128_encrypt_block@20 proc + pxor xmm0, [ecx] + aesenc xmm0, [ecx + 10h] + aesenc xmm0, [ecx + 20h] + aesenc xmm0, [ecx + 30h] + aesenc xmm0, [ecx + 40h] + aesenc xmm0, [ecx + 50h] + aesenc xmm0, [ecx + 60h] + aesenc xmm0, [ecx + 70h] + aesenc xmm0, [ecx + 80h] + aesenc xmm0, [ecx + 90h] + aesenclast xmm0, [ecx + 0A0h] + ret +@raw_aes128_encrypt_block@20 endp + +@raw_aes128_decrypt_block@20 proc + pxor xmm0, [ecx] + aesdec xmm0, [ecx + 10h] + aesdec xmm0, [ecx + 20h] + aesdec xmm0, [ecx + 30h] + aesdec xmm0, [ecx + 40h] + aesdec xmm0, [ecx + 50h] + aesdec xmm0, [ecx + 60h] + aesdec xmm0, [ecx + 70h] + aesdec xmm0, [ecx + 80h] + aesdec xmm0, [ecx + 90h] + aesdeclast xmm0, [ecx + 0A0h] + ret +@raw_aes128_decrypt_block@20 endp + +@raw_aes128_expand_key_schedule@20 proc + ; A "word" (in terms of the FIPS 187 standard) is a 32-bit block. + ; Words are denoted by `w[N]`. + ; + ; A key schedule is composed of 10 "regular" keys and a dumb key for + ; the "whitening" step. + ; + ; A key schedule is thus composed of 44 "words". + ; The FIPS standard includes an algorithm to calculate these words via + ; a simple loop: + ; + ; i = 4 + ; while i < 44: + ; temp = w[i - 1] + ; if i % 4 == 0: + ; temp = SubWord(RotWord(temp))^Rcon + ; w[i] = w[i - 4]^temp + ; i = i + 1 + ; + ; The loop above may be unrolled like this: + ; + ; w[4] = SubWord(RotWord(w[3]))^Rcon^w[0] + ; w[5] = w[4]^w[1] + ; = SubWord(RotWord(w[3]))^Rcon^w[1]^w[0] + ; w[6] = w[5]^w[2] + ; = SubWord(RotWord(w[3]))^Rcon^w[2]^w[1]^w[0] + ; w[7] = w[6]^w[3] + ; = SubWord(RotWord(w[3]))^Rcon^w[3]^w[2]^w[1]^w[0] + ; w[8] = SubWord(RotWord(w[7]))^Rcon^w[4] + ; w[9] = w[8]^w[5] + ; = SubWord(RotWord(w[7]))^Rcon^w[5]^w[4] + ; w[10] = w[9]^w[6] + ; = SubWord(RotWord(w[7]))^Rcon^w[6]^w[5]^w[4] + ; w[11] = w[10]^w[7] + ; = SubWord(RotWord(w[7]))^Rcon^w[7]^w[6]^w[5]^w[4] + ; + ; ... and so on. + ; + ; The Intel AES-NI instruction set facilitates calculating SubWord + ; and RotWord using `aeskeygenassist`, which is used in this routine. + ; + ; Preconditions: + ; * xmm0[127:96] == w[3], + ; * xmm0[95:64] == w[2], + ; * xmm0[63:32] == w[1], + ; * xmm0[31:0] == w[0]. + + movdqa [ecx], xmm0 ; sets w[0], w[1], w[2], w[3] + add ecx, 10h ; ecx = &w[4] + + aeskeygenassist xmm7, xmm0, 01h ; xmm7[127:96] = RotWord(SubWord(w[3]))^Rcon + call aes128_keygen_assist ; sets w[4], w[5], w[6], w[7] + aeskeygenassist xmm7, xmm0, 02h ; xmm7[127:96] = RotWord(SubWord(w[7]))^Rcon + call aes128_keygen_assist ; sets w[8], w[9], w[10], w[11] + aeskeygenassist xmm7, xmm0, 04h ; xmm7[127:96] = RotWord(SubWord(w[11]))^Rcon + call aes128_keygen_assist ; sets w[12], w[13], w[14], w[15] + aeskeygenassist xmm7, xmm0, 08h ; xmm7[127:96] = RotWord(SubWord(w[15]))^Rcon + call aes128_keygen_assist ; sets w[16], w[17], w[18], w[19] + aeskeygenassist xmm7, xmm0, 10h ; xmm7[127:96] = RotWord(SubWord(w[19]))^Rcon + call aes128_keygen_assist ; sets w[20], w[21], w[22], w[23] + aeskeygenassist xmm7, xmm0, 20h ; xmm7[127:96] = RotWord(SubWord(w[23]))^Rcon + call aes128_keygen_assist ; sets w[24], w[25], w[26], w[27] + aeskeygenassist xmm7, xmm0, 40h ; xmm7[127:96] = RotWord(SubWord(w[27]))^Rcon + call aes128_keygen_assist ; sets w[28], w[29], w[30], w[31] + aeskeygenassist xmm7, xmm0, 80h ; xmm7[127:96] = RotWord(SubWord(w[31]))^Rcon + call aes128_keygen_assist ; sets w[32], w[33], w[34], w[35] + aeskeygenassist xmm7, xmm0, 1Bh ; xmm7[127:96] = RotWord(SubWord(w[35]))^Rcon + call aes128_keygen_assist ; sets w[36], w[37], w[38], w[39] + aeskeygenassist xmm7, xmm0, 36h ; xmm7[127:96] = RotWord(SubWord(w[39]))^Rcon + call aes128_keygen_assist ; sets w[40], w[41], w[42], w[43] + + ret + +aes128_keygen_assist: + ; Preconditions: + ; * xmm0[127:96] == w[i+3], + ; * xmm0[95:64] == w[i+2], + ; * xmm0[63:32] == w[i+1], + ; * xmm0[31:0] == w[i], + ; * xmm7[127:96] == RotWord(SubWord(w[i+3]))^Rcon, + ; * ecx == &w[i+4]. + ; + ; Postconditions: + ; * xmm0[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm0[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i], + ; * xmm0[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i], + ; * xmm0[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i], + ; * ecx == &w[i+8], + ; * the value in xmm6 is also modified. + + ; Calculate + ; w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+2]^w[i+1]^w[i], + ; w[i+1]^w[i] and + ; w[i]. + movdqa xmm6, xmm0 ; xmm6 = xmm0 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + ; xmm0[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+1]^w[i] + ; xmm0[31:0] == w[i] + + ; Calculate + ; w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i], + ; w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] and + ; w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i]. + pshufd xmm6, xmm7, 0FFh ; xmm6[127:96] = xmm6[95:64] = xmm6[63:32] = xmm6[31:0] = xmm7[127:96] + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + ; xmm0[127:96] == w[i+7] == RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+6] == RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+5] == RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] + ; xmm0[31:0] == w[i+4] == RotWord(SubWord(w[i+3]))^Rcon^w[i] + + ; Set w[i+4], w[i+5], w[i+6] and w[i+7]. + movdqa [ecx], xmm0 ; w[i+7] = RotWord(SubWord(w[i+3]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i] + ; w[i+6] = RotWord(SubWord(w[i+3]))^Rcon^w[i+2]^w[i+1]^w[i] + ; w[i+5] = RotWord(SubWord(w[i+3]))^Rcon^w[i+1]^w[i] + ; w[i+4] = RotWord(SubWord(w[i+3]))^Rcon^w[i] + add ecx, 10h ; ecx = &w[i+8] + + ret +@raw_aes128_expand_key_schedule@20 endp + +@raw_aes128_invert_key_schedule@8 proc + movdqa xmm7, [ecx] + movdqa xmm6, [ecx + 0A0h] + movdqa [edx], xmm6 + movdqa [edx + 0A0h], xmm7 + + aesimc xmm7, [ecx + 10h] + aesimc xmm6, [ecx + 90h] + movdqa [edx + 10h], xmm6 + movdqa [edx + 90h], xmm7 + + aesimc xmm7, [ecx + 20h] + aesimc xmm6, [ecx + 80h] + movdqa [edx + 20h], xmm6 + movdqa [edx + 80h], xmm7 + + aesimc xmm7, [ecx + 30h] + aesimc xmm6, [ecx + 70h] + movdqa [edx + 30h], xmm6 + movdqa [edx + 70h], xmm7 + + aesimc xmm7, [ecx + 40h] + aesimc xmm6, [ecx + 60h] + movdqa [edx + 40h], xmm6 + movdqa [edx + 60h], xmm7 + + aesimc xmm7, [ecx + 50h] + movdqa [edx + 50h], xmm7 + + ret +@raw_aes128_invert_key_schedule@8 endp + +end diff --git a/src/asm/aes192.asm b/src/asm/aes192.asm new file mode 100644 index 0000000..5cc8ded --- /dev/null +++ b/src/asm/aes192.asm @@ -0,0 +1,248 @@ +; Copyright 2015 Egor Tensin +; This file is licensed under the terms of the MIT License. +; See LICENSE.txt for details. + +.586 +.xmm +.model flat + +.code + +@raw_aes192_encrypt_block@20 proc + pxor xmm0, [ecx] + aesenc xmm0, [ecx + 10h] + aesenc xmm0, [ecx + 20h] + aesenc xmm0, [ecx + 30h] + aesenc xmm0, [ecx + 40h] + aesenc xmm0, [ecx + 50h] + aesenc xmm0, [ecx + 60h] + aesenc xmm0, [ecx + 70h] + aesenc xmm0, [ecx + 80h] + aesenc xmm0, [ecx + 90h] + aesenc xmm0, [ecx + 0A0h] + aesenc xmm0, [ecx + 0B0h] + aesenclast xmm0, [ecx + 0C0h] + ret +@raw_aes192_encrypt_block@20 endp + +@raw_aes192_decrypt_block@20 proc + pxor xmm0, [ecx] + aesdec xmm0, [ecx + 10h] + aesdec xmm0, [ecx + 20h] + aesdec xmm0, [ecx + 30h] + aesdec xmm0, [ecx + 40h] + aesdec xmm0, [ecx + 50h] + aesdec xmm0, [ecx + 60h] + aesdec xmm0, [ecx + 70h] + aesdec xmm0, [ecx + 80h] + aesdec xmm0, [ecx + 90h] + aesdec xmm0, [ecx + 0A0h] + aesdec xmm0, [ecx + 0B0h] + aesdeclast xmm0, [ecx + 0C0h] + ret +@raw_aes192_decrypt_block@20 endp + +@raw_aes192_expand_key_schedule@36 proc + ; A "word" (in terms of the FIPS 187 standard) is a 32-bit block. + ; Words are denoted by `w[N]`. + ; + ; A key schedule is composed of 12 "regular" keys and a dumb key for + ; the "whitening" step. + ; + ; A key schedule is thus composed of 52 "words". + ; The FIPS standard includes an algorithm to calculate these words via + ; a simple loop: + ; + ; i = 6 + ; while i < 52: + ; temp = w[i - 1] + ; if i % 6 == 0: + ; temp = SubWord(RotWord(temp))^Rcon + ; w[i] = w[i - 6]^temp + ; i = i + 1 + ; + ; The loop above may be unrolled like this: + ; + ; w[6] = SubWord(RotWord(w[5]))^Rcon^w[0] + ; w[7] = w[6]^w[1] + ; = SubWord(RotWord(w[5]))^Rcon^w[0]^w[1] + ; w[8] = w[7]^w[2] + ; = SubWord(RotWord(w[5]))^Rcon^w[0]^w[1]^w[2] + ; w[9] = w[8]^w[3] + ; = SubWord(RotWord(w[5]))^Rcon^w[0]^w[1]^w[2]^w[3] + ; w[10] = w[9]^w[4] + ; = SubWord(RotWord(w[5]))^Rcon^w[0]^w[1]^w[2]^w[3]^w[4] + ; w[11] = w[10]^w[5] + ; = SubWord(RotWord(w[5]))^Rcon^w[0]^w[1]^w[2]^w[3]^w[4]^w[5] + ; w[12] = SubWord(RotWord(w[11]))^Rcon^w[6] + ; w[13] = w[12]^w[7] + ; = SubWord(RotWord(w[11]))^Rcon^w[6]^w[7] + ; w[14] = w[13]^w[8] + ; = SubWord(RotWord(w[11]))^Rcon^w[6]^w[7]^w[8] + ; w[15] = w[14]^w[9] + ; = SubWord(RotWord(w[11]))^Rcon^w[6]^w[7]^w[8]^w[9] + ; w[16] = w[15]^w[10] + ; = SubWord(RotWord(w[11]))^Rcon^w[6]^w[7]^w[8]^w[9]^w[10] + ; w[17] = w[16]^w[11] + ; = SubWort(RotWord(w[11]))^Rcon^w[6]^w[7]^w[8]^w[9]^w[10]^w[11] + ; + ; ... and so on. + ; + ; The Intel AES-NI instruction set facilitates calculating SubWord + ; and RotWord using `aeskeygenassist`, which is used in this routine. + ; + ; Preconditions: + ; * xmm1[63:32] == w[5], + ; * xmm1[31:0] == w[4], + ; * xmm0[127:96] == w[3], + ; * xmm0[95:64] == w[2], + ; * xmm0[63:32] == w[1], + ; * xmm0[31:0] == w[0]. + + movdqa [ecx], xmm0 ; sets w[0], w[1], w[2], w[3] + movq qword ptr [ecx + 10h], xmm1 ; sets w[4], w[5] + + aeskeygenassist xmm7, xmm1, 1 ; xmm7[63:32] = RotWord(SubWord(w[5]))^Rcon, + call aes192_keygen_assist + movdqu [ecx + 18h], xmm0 + movq qword ptr [ecx + 28h], xmm1 + aeskeygenassist xmm7, xmm1, 2 ; xmm7[63:32] = RotWord(SubWord(w[11]))^Rcon + call aes192_keygen_assist + movdqa [ecx + 30h], xmm0 + movq qword ptr [ecx + 40h], xmm1 + aeskeygenassist xmm7, xmm1, 4 ; xmm7[63:32] = RotWord(SubWord(w[17]))^Rcon + call aes192_keygen_assist + movdqu [ecx + 48h], xmm0 + movq qword ptr [ecx + 58h], xmm1 + aeskeygenassist xmm7, xmm1, 8 ; xmm7[63:32] = RotWord(SubWord(w[23]))^Rcon + call aes192_keygen_assist + movdqa [ecx + 60h], xmm0 + movq qword ptr [ecx + 70h], xmm1 + aeskeygenassist xmm7, xmm1, 10h ; xmm7[63:32] = RotWord(SubWord(w[29]))^Rcon + call aes192_keygen_assist + movdqu [ecx + 78h], xmm0 + movq qword ptr [ecx + 88h], xmm1 + aeskeygenassist xmm7, xmm1, 20h ; xmm7[63:32] = RotWord(SubWord(w[35]))^Rcon + call aes192_keygen_assist + movdqa [ecx + 90h], xmm0 + movq qword ptr [ecx + 0a0h], xmm1 + aeskeygenassist xmm7, xmm1, 40h ; xmm7[63:32] = RotWord(SubWord(w[41]))^Rcon + call aes192_keygen_assist + movdqu [ecx + 0a8h], xmm0 + movq qword ptr [ecx + 0b8h], xmm1 + aeskeygenassist xmm7, xmm1, 80h ; xmm7[63:32] = RotWord(SubWord(w[49]))^Rcon + call aes192_keygen_assist + movdqa [ecx + 0c0h], xmm0 + + ret + +aes192_keygen_assist: + ; Preconditions: + ; * xmm1[127:96] == 0, + ; * xmm1[95:64] == 0, + ; * xmm1[63:32] == w[i+5], + ; * xmm1[31:0] == w[i+4], + ; * xmm0[127:96] == w[i+3], + ; * xmm0[95:64] == w[i+2], + ; * xmm0[63:32] == w[i+1], + ; * xmm0[31:0] == w[i], + ; * xmm7[63:32] == RotWord(SubWord(w[i+5]))^Rcon. + ; + ; Postconditions: + ; * xmm1[127:96] == 0, + ; * xmm1[95:64] == 0, + ; * xmm1[63:32] == w[i+11] == RotWord(SubWord(w[i+5]))^Rcon^w[i+5]^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm1[31:0] == w[i+10] == RotWord(SubWord(w[i+5]))^Rcon^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm0[127:96] == w[i+9] == RotWord(SubWord(w[i+5]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm0[95:64] == w[i+8] == RotWord(SubWord(w[i+5]))^Rcon^w[i+2]^w[i+1]^w[i], + ; * xmm0[63:32] == w[i+7] == RotWord(SubWord(w[i+5]))^Rcon^w[i+1]^w[i], + ; * xmm0[31:0] == w[i+6] == RotWord(SubWord(w[i+5]))^Rcon^w[i], + ; * the value in xmm6 is also modified. + + ; Calculate + ; w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+2]^w[i+1]^w[i], + ; w[i+1]^w[i] and + ; w[i]. + movdqa xmm6, xmm0 ; xmm6 = xmm0 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + ; xmm0[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+1]^w[i] + ; xmm0[31:0] == w[i] + + ; Calculate + ; w[i+9] == RotWord(SubWord(w[i+5]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+8] == RotWord(SubWord(w[i+5]))^Rcon^w[i+2]^w[i+1]^w[i], + ; w[i+7] == RotWord(SubWord(w[i+5]))^Rcon^w[i+1]^w[i] and + ; w[i+6] == RotWord(SubWord(w[i+5]))^Rcon^w[i]. + pshufd xmm6, xmm7, 55h ; xmm6[127:96] = xmm6[95:64] = xmm6[63:32] = xmm6[31:0] = xmm7[63:32] + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + ; xmm0[127:96] == w[i+9] == RotWord(SubWord(w[i+5]))^Rcon^w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+8] == RotWord(SubWord(w[i+5]))^Rcon^w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+7] == RotWord(SubWord(w[i+5]))^Rcon^w[i+1]^w[i] + ; xmm0[31:0] == w[i+6] == RotWord(SubWord(w[i+5]))^Rcon^w[i] + + ; Calculate + ; w[i+5]^w[i+4], + ; w[i+4]. + pshufd xmm6, xmm1, 0F3h ; xmm6 = xmm1[31:0] << 32 + pxor xmm1, xmm6 ; xmm1 ^= xmm7 + ; xmm1[63:32] == w[i+5]^w[i+4] + ; xmm1[31:0] == w[i+4] + + ; Calculate + ; w[i+10] == RotWord(SubWord(w[i+5]))^Rcon^w[i+5]^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+11] == RotWord(SubWord(w[i+5]))^Rcon^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i]. + pshufd xmm6, xmm0, 0FFh ; xmm6[127:96] = xmm6[95:64] = xmm6[63:32] = xmm6[31:0] = xmm0[127:96] + psrldq xmm6, 8 ; xmm6 >>= 64 + pxor xmm1, xmm6 ; xmm1 ^= xmm6 + ; xmm1[63:32] == w[i+11] == RotWord(SubWord(w[i+5]))^Rcon^w[i+5]^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm1[31:0] == w[i+10] == RotWord(SubWord(w[i+5]))^Rcon^w[i+4]^w[i+3]^w[i+2]^w[i+1]^w[i] + + ret +@raw_aes192_expand_key_schedule@36 endp + +@raw_aes192_invert_key_schedule@8 proc + movdqa xmm7, [ecx] + movdqa xmm6, [ecx + 0C0h] + movdqa [edx], xmm6 + movdqa [edx + 0C0h], xmm7 + + aesimc xmm7, [ecx + 10h] + aesimc xmm6, [ecx + 0B0h] + movdqa [edx + 10h], xmm6 + movdqa [edx + 0B0h], xmm7 + + aesimc xmm7, [ecx + 20h] + aesimc xmm6, [ecx + 0A0h] + movdqa [edx + 20h], xmm6 + movdqa [edx + 0A0h], xmm7 + + aesimc xmm7, [ecx + 30h] + aesimc xmm6, [ecx + 90h] + movdqa [edx + 30h], xmm6 + movdqa [edx + 90h], xmm7 + + aesimc xmm7, [ecx + 40h] + aesimc xmm6, [ecx + 80h] + movdqa [edx + 40h], xmm6 + movdqa [edx + 80h], xmm7 + + aesimc xmm7, [ecx + 50h] + aesimc xmm6, [ecx + 70h] + movdqa [edx + 50h], xmm6 + movdqa [edx + 70h], xmm7 + + aesimc xmm7, [ecx + 60h] + movdqa [edx + 60h], xmm7 + + ret +@raw_aes192_invert_key_schedule@8 endp + +end diff --git a/src/asm/aes256.asm b/src/asm/aes256.asm new file mode 100644 index 0000000..413e67b --- /dev/null +++ b/src/asm/aes256.asm @@ -0,0 +1,286 @@ +; Copyright 2015 Egor Tensin +; This file is licensed under the terms of the MIT License. +; See LICENSE.txt for details. + +.586 +.xmm +.model flat + +.code + +@raw_aes256_encrypt_block@20 proc + pxor xmm0, [ecx] + aesenc xmm0, [ecx + 10h] + aesenc xmm0, [ecx + 20h] + aesenc xmm0, [ecx + 30h] + aesenc xmm0, [ecx + 40h] + aesenc xmm0, [ecx + 50h] + aesenc xmm0, [ecx + 60h] + aesenc xmm0, [ecx + 70h] + aesenc xmm0, [ecx + 80h] + aesenc xmm0, [ecx + 90h] + aesenc xmm0, [ecx + 0A0h] + aesenc xmm0, [ecx + 0B0h] + aesenc xmm0, [ecx + 0C0h] + aesenc xmm0, [ecx + 0D0h] + aesenclast xmm0, [ecx + 0E0h] + ret +@raw_aes256_encrypt_block@20 endp + +@raw_aes256_decrypt_block@20 proc + pxor xmm0, [ecx] + aesdec xmm0, [ecx + 10h] + aesdec xmm0, [ecx + 20h] + aesdec xmm0, [ecx + 30h] + aesdec xmm0, [ecx + 40h] + aesdec xmm0, [ecx + 50h] + aesdec xmm0, [ecx + 60h] + aesdec xmm0, [ecx + 70h] + aesdec xmm0, [ecx + 80h] + aesdec xmm0, [ecx + 90h] + aesdec xmm0, [ecx + 0A0h] + aesdec xmm0, [ecx + 0B0h] + aesdec xmm0, [ecx + 0C0h] + aesdec xmm0, [ecx + 0D0h] + aesdeclast xmm0, [ecx + 0E0h] + ret +@raw_aes256_decrypt_block@20 endp + +@raw_aes256_expand_key_schedule@36 proc + ; A "word" (in terms of the FIPS 187 standard) is a 32-bit block. + ; Words are denoted by `w[N]`. + ; + ; A key schedule is composed of 14 "regular" keys and a dumb key for + ; the "whitening" step. + ; + ; A key schedule is thus composed of 60 "words". + ; The FIPS standard includes an algorithm to calculate these words via + ; a simple loop: + ; + ; i = 8 + ; while i < 60: + ; temp = w[i - 1] + ; if i % 8 == 0: + ; temp = SubWord(RotWord(temp))^Rcon + ; elif i % 8 == 4: + ; temp = SubWord(temp) + ; w[i] = w[i - 8]^temp + ; i = i + 1 + ; + ; The loop above may be unrolled like this: + ; + ; w[8] = SubWord(RotWord(w[7]))^Rcon^w[0] + ; w[9] = w[8]^w[1] + ; = SubWord(RotWord(w[7]))^Rcon^w[1]^w[0] + ; w[10] = w[9]^w[2] + ; = SubWord(RotWord(w[7]))^Rcon^w[2]^w[1]^w[0] + ; w[11] = w[10]^w[3] + ; = SubWord(RotWord(w[7]))^Rcon^w[3]^w[2]^w[1]^w[0] + ; w[12] = SubWord(w[11])^w[4] + ; w[13] = w[12]^w[5] + ; = SubWord(w[11])^w[5]^w[4] + ; w[14] = w[13]^w[6] + ; = SubWord(w[11])^w[6]^w[5]^w[4] + ; w[15] = w[14]^w[7] + ; = SubWord(w[11])^w[7]^w[6]^w[5]^w[4] + ; w[16] = SubWord(RotWord(w[15]))^Rcon^w[8] + ; w[17] = w[16]^w[9] + ; = SubWord(RotWord(w[15]))^Rcon^w[9]^w[8] + ; w[18] = w[17]^w[10] + ; = SubWord(RotWord(w[15]))^Rcon^w[10]^w[9]^w[8] + ; w[19] = w[18]^w[11] + ; = SubWord(RotWord(w[15]))^Rcon^w[11]^w[10]^w[9]^w[8] + ; w[20] = SubWord(w[19])^w[12] + ; w[21] = w[20]^w[13] + ; = SubWord(w[19])^w[13]^w[12] + ; w[22] = w[21]^w[14] + ; = SubWord(w[19])^w[14]^w[13]^w[12] + ; w[23] = w[22]^w[15] + ; = SubWord(w[19])^w[15]^w[14]^w[13]^w[12] + ; + ; ... and so on. + ; + ; The Intel AES-NI instruction set facilitates calculating SubWord + ; and RotWord using `aeskeygenassist`, which is used in this routine. + ; + ; Preconditions: + ; * xmm1[127:96] == w[7], + ; * xmm1[95:64] == w[6], + ; * xmm1[63:32] == w[5], + ; * xmm1[31:0] == w[4], + ; * xmm0[127:96] == w[3], + ; * xmm0[95:64] == w[2], + ; * xmm0[63:32] == w[1], + ; * xmm0[31:0] == w[0]. + + movdqa [ecx], xmm0 ; sets w[0], w[1], w[2], w[3] + movdqa [ecx + 10h], xmm1 ; sets w[4], w[5], w[6], w[7] + lea ecx, [ecx + 20h] ; ecx = &w[8] + + aeskeygenassist xmm7, xmm1, 1h ; xmm7[127:96] = RotWord(SubWord(w[7]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[8], w[9], w[10], w[11] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[11]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[12], w[13], w[14], w[15] + + aeskeygenassist xmm7, xmm1, 2h ; xmm7[127:96] = RotWord(SubWord(w[15]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[16], w[17], w[18], w[19] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[19]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[20], w[21], w[22], w[23] + + aeskeygenassist xmm7, xmm1, 4h ; xmm7[127:96] = RotWord(SubWord(w[23]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[24], w[25], w[26], w[27] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[27]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[28], w[29], w[30], w[31] + + aeskeygenassist xmm7, xmm1, 8h ; xmm7[127:96] = RotWord(SubWord(w[31]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[32], w[33], w[34], w[35] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[35]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[36], w[37], w[38], w[39] + + aeskeygenassist xmm7, xmm1, 10h ; xmm7[127:96] = RotWord(SubWord(w[39]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[40], w[41], w[42], w[43] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[43]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[44], w[45], w[46], w[47] + + aeskeygenassist xmm7, xmm1, 20h ; xmm7[127:96] = RotWord(SubWord(w[47]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[48], w[49], w[50], w[51] + + aeskeygenassist xmm7, xmm1, 0 ; xmm7[95:64] = SubWord(w[51]) + pshufd xmm7, xmm7, 0AAh ; xmm7[127:96] = xmm7[63:32] = xmm7[31:0] = xmm7[95:64] + call aes256_keygen_assist ; sets w[52], w[53], w[54], w[55] + + aeskeygenassist xmm7, xmm1, 40h ; xmm7[127:96] = RotWord(SubWord(w[55]))^Rcon + pshufd xmm7, xmm7, 0FFh ; xmm7[95:64] = xmm7[63:32] = xmm7[31:0] = xmm7[127:96] + call aes256_keygen_assist ; sets w[56], w[57], w[58], w[59] + + ret + +aes256_keygen_assist: + ; Preconditions: + ; * xmm1[127:96] == w[i+7], + ; * xmm1[95:64] == w[i+6], + ; * xmm1[63:32] == w[i+5], + ; * xmm1[31:0] == w[i+4], + ; * xmm0[127:96] == w[i+3], + ; * xmm0[95:64] == w[i+2], + ; * xmm0[63:32] == w[i+1], + ; * xmm0[31:0] == w[i], + ; * xmm7[127:96] == xmm7[95:64] == xmm7[63:32] == xmm7[31:0] == HWGEN, + ; where HWGEN is either RotWord(SubWord(w[i+7]))^Rcon or SubWord(w[i+7]), + ; depending on the number of the round being processed, + ; * ecx == &w[i+8]. + ; + ; Postconditions: + ; * xmm1[127:96] == w[i+11] == HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i], + ; * xmm1[95:64] == w[i+10] == HWGEN^w[i+2]^w[i+1]^w[i], + ; * xmm1[63:32] == w[i+9] == HWGEN^w[i+1]^w[i], + ; * xmm1[31:0] == w[i+8] == HWGEN^w[i], + ; * xmm0[127:96] == w[i+7], + ; * xmm0[95:64] == w[i+6], + ; * xmm0[63:32] == w[i+5], + ; * xmm0[31:0] == w[i+4], + ; * ecx == &w[i+12], + ; * the value in xmm6 is also modified. + + ; Calculate + ; w[i+3]^w[i+2]^w[i+1]^w[i], + ; w[i+2]^w[i+1]^w[i], + ; w[i+1]^w[i] and + ; w[i]. + movdqa xmm6, xmm0 ; xmm6 = xmm0 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + pslldq xmm6, 4 ; xmm6 <<= 32 + pxor xmm0, xmm6 ; xmm0 ^= xmm6 + ; xmm0[127:96] == w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+1]^w[i] + ; xmm0[31:0] == w[i] + + ; Calculate + ; HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i], + ; HWGEN^w[i+2]^w[i+1]^w[i], + ; HWGEN^w[i+1]^w[i] and + ; HWGEN^w[i]. + pxor xmm0, xmm7 ; xmm0 ^= xmm7 + ; xmm0[127:96] == w[i+11] == HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i] + ; xmm0[95:64] == w[i+10] == HWGEN^w[i+2]^w[i+1]^w[i] + ; xmm0[63:32] == w[i+9] == HWGEN^w[i+1]^w[i] + ; xmm0[31:0] == w[i+8] == HWGEN^w[i] + + ; Set w[i+8], w[i+9], w[i+10] and w[i+11]. + movdqa [ecx], xmm0 ; w[i+8] = HWGEN^w[i] + ; w[i+9] = HWGEN^w[i+1]^w[i] + ; w[i+10] = HWGEN^w[i+2]^w[i+1]^w[i] + ; w[i+11] = HWGEN^w[i+3]^w[i+2]^w[i+1]^w[i] + add ecx, 10h ; ecx = &w[i+12] + + ; Swap the values in xmm0 and xmm1. + pxor xmm0, xmm1 + pxor xmm1, xmm0 + pxor xmm0, xmm1 + + ret +@raw_aes256_expand_key_schedule@36 endp + +@raw_aes256_invert_key_schedule@8 proc + movdqa xmm7, [ecx] + movdqa xmm6, [ecx + 0E0h] + movdqa [edx], xmm6 + movdqa [edx + 0E0h], xmm7 + + aesimc xmm7, [ecx + 10h] + aesimc xmm6, [ecx + 0D0h] + movdqa [edx + 10h], xmm6 + movdqa [edx + 0D0h], xmm7 + + aesimc xmm7, [ecx + 20h] + aesimc xmm6, [ecx + 0C0h] + movdqa [edx + 20h], xmm6 + movdqa [edx + 0C0h], xmm7 + + aesimc xmm7, [ecx + 30h] + aesimc xmm6, [ecx + 0B0h] + movdqa [edx + 30h], xmm6 + movdqa [edx + 0B0h], xmm7 + + aesimc xmm7, [ecx + 40h] + aesimc xmm6, [ecx + 0A0h] + movdqa [edx + 40h], xmm6 + movdqa [edx + 0A0h], xmm7 + + aesimc xmm7, [ecx + 50h] + aesimc xmm6, [ecx + 90h] + movdqa [edx + 50h], xmm6 + movdqa [edx + 90h], xmm7 + + aesimc xmm7, [ecx + 60h] + aesimc xmm6, [ecx + 80h] + movdqa [edx + 60h], xmm6 + movdqa [edx + 80h], xmm7 + + aesimc xmm7, [ecx + 70h] + movdqa [edx + 70h], xmm7 + + ret +@raw_aes256_invert_key_schedule@8 endp + +end -- cgit v1.2.3