1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
---
title: Recurring decimals
category: Math
mathjax: true
---
First, let's determine that
$$
\newcommand\naturals{\mathbb{N}}
\newcommand\rationals{\mathbb{Q}}
\newcommand\reals{\mathbb{R}}
\newcommand\xs{x_{1}x_{2}\dots x_n}
\newcommand\nines{\overbrace{99\dots 9}^n}
\newcommand\pq{\frac{p}{q}}
\newcommand\qp{\frac{q}{p}}
0.(9) = 1
$$
This may seem counter-intuitive, but demonstrably true.
If $$0.(9) \neq 1$$, then $$\exists n \in \reals: 0.(9) < n < 1$$.
To put it another way, there must be a number greater than 0.(9) and lesser
than 1, equal to neither.
Thinking about it makes it obvious this is not true.
Slightly more formally,
$$
\begin{align*}
1 - 0.9 &= \frac{1}{10} \\
1 - 0.99 &= \frac{1}{100} \\
1 - 0.999 &= \frac{1}{10^{-3}} \\
\dots \\
1 - 0.\nines &= \frac{1}{10^n} \\
\end{align*}
$$
If $$0.(9) \neq 1$$, the following must hold:
$$
\forall n \in \naturals, \exists x \in \reals: x < \frac{1}{10^n}
$$
It's clear that the only such number is 0, making 0.(9) and 1 equal.
Let $$n \in [1,9]$$.
Is there $$\pq \in \rationals: \pq = 0.(n)$$?
For $$n = 9$$, we've established $$p = 1, q = 1$$.
For the other values of $$n$$ we can observe that
$$
\begin{align*}
0.(1) \times 9 &= 0.(9) = 1 \\
0.(2) \times 9/2 &= 0.(9) = 1 \\
0.(3) \times 9/3 &= 0.(9) \\
\dots \\
0.(8) \times 9/8 &= 0.(9) \\
0.(9) \times 1 &= 0.(9)
\end{align*}
$$
So,
$$
\forall n \in [1,9], \frac{n}{9} = 0.(n)
$$
In general, let's demonstrate that
$$
\forall n \in \naturals, n > 0, \forall 0.(x_{1}x_{2}\dots x_n), \exists \pq \in \rationals: \pq = 0.(\xs)
$$
Let $$p = \xs, q =\,\nines$$.
It's clear that
$$
\begin{align*}
0.(\xs) \times \qp &= 0.(\xs) \times \frac{\nines}{\xs} \\
&= \left(\frac{\xs}{10^n} + \frac{\xs}{10^{2n}} + \dots\right) \times \frac{\nines}{\xs} \\
&= \left(\frac{1}{10^n} + \frac{1}{10^{2n}} + \dots\right) \times\,\nines \\
&= 0.(9) \\
&= 1
\end{align*}
$$
Finally, $$0.(\xs) \times \qp = 1 \implies \pq = 0.(\xs)$$.
|