aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/_posts/2019-09-30-recurring-decimals.md
diff options
context:
space:
mode:
Diffstat (limited to '_posts/2019-09-30-recurring-decimals.md')
-rw-r--r--_posts/2019-09-30-recurring-decimals.md4
1 files changed, 3 insertions, 1 deletions
diff --git a/_posts/2019-09-30-recurring-decimals.md b/_posts/2019-09-30-recurring-decimals.md
index 83d949c..1151c19 100644
--- a/_posts/2019-09-30-recurring-decimals.md
+++ b/_posts/2019-09-30-recurring-decimals.md
@@ -6,6 +6,8 @@ excerpt: >
category: Math
mathjax: true
---
+{% include common/mathjax_workaround.md %}
+
First, let's determine that
$$
@@ -21,7 +23,7 @@ $$
0.(9) = 1
$$
-This is counter-intuitive, but demonstrably true.
+This may seem counter-intuitive, but demonstrably true.
If $$0.(9) \neq 1$$, then $$\exists n \in \reals: 0.(9) < n < 1$$.
To put it another way, there must be a number greater than 0.(9) and lesser
than 1, equal to neither.