diff options
Diffstat (limited to '_posts/2019-09-30-recurring-decimals.md')
-rw-r--r-- | _posts/2019-09-30-recurring-decimals.md | 93 |
1 files changed, 0 insertions, 93 deletions
diff --git a/_posts/2019-09-30-recurring-decimals.md b/_posts/2019-09-30-recurring-decimals.md deleted file mode 100644 index 741d083..0000000 --- a/_posts/2019-09-30-recurring-decimals.md +++ /dev/null @@ -1,93 +0,0 @@ ---- -title: Recurring decimals -excerpt: > - Eighth-grader thoughts on recurring decimals. -category: Math -mathjax: true ---- -{% include common/mathjax_workaround.md %} - -First, let's determine that - -$$ -\newcommand\naturals{\mathbb{N}} -\newcommand\rationals{\mathbb{Q}} -\newcommand\reals{\mathbb{R}} - -\newcommand\xs{x_{1}x_{2}\dots x_n} -\newcommand\nines{\overbrace{99\dots 9}^n} -\newcommand\pq{\frac{p}{q}} -\newcommand\qp{\frac{q}{p}} - -0.(9) = 1 -$$ - -This may seem counter-intuitive, but demonstrably true. -If $$0.(9) \neq 1$$, then $$\exists n \in \reals: 0.(9) < n < 1$$. -To put it another way, there must be a number greater than 0.(9) and lesser -than 1, equal to neither. -Thinking about it makes it obvious this is not true. - -Slightly more formally, - -$$ -\begin{align*} -1 - 0.9 &= \frac{1}{10} \\ -1 - 0.99 &= \frac{1}{100} \\ -1 - 0.999 &= \frac{1}{10^{-3}} \\ -\dots \\ -1 - 0.\nines &= \frac{1}{10^n} \\ -\end{align*} -$$ - -If $$0.(9) \neq 1$$, the following must hold: - -$$ -\forall n \in \naturals, \exists x \in \reals: x < \frac{1}{10^n} -$$ - -It's clear that the only such number is 0, making 0.(9) and 1 equal. - -Let $$n \in [1,9]$$. -Is there $$\pq \in \rationals: \pq = 0.(n)$$? - -For $$n = 9$$, we've established $$p = 1, q = 1$$. -For the other values of $$n$$ we can observe that - -$$ -\begin{align*} -0.(1) \times 9 &= 0.(9) = 1 \\ -0.(2) \times 9/2 &= 0.(9) = 1 \\ -0.(3) \times 9/3 &= 0.(9) \\ -\dots \\ -0.(8) \times 9/8 &= 0.(9) \\ -0.(9) \times 1 &= 0.(9) -\end{align*} -$$ - -So, - -$$ -\forall n \in [1,9], \frac{n}{9} = 0.(n) -$$ - -In general, let's demonstrate that - -$$ -\forall n \in \naturals, n > 0, \forall 0.(x_{1}x_{2}\dots x_n), \exists \pq \in \rationals: \pq = 0.(\xs) -$$ - -Let $$p = \xs, q =\,\nines$$. -It's clear that - -$$ -\begin{align*} -0.(\xs) \times \qp &= 0.(\xs) \times \frac{\nines}{\xs} \\ -&= \left(\frac{\xs}{10^n} + \frac{\xs}{10^{2n}} + \dots\right) \times \frac{\nines}{\xs} \\ -&= \left(\frac{1}{10^n} + \frac{1}{10^{2n}} + \dots\right) \times\,\nines \\ -&= 0.(9) \\ -&= 1 -\end{align*} -$$ - -Finally, $$0.(\xs) \times \qp = 1 \implies \pq = 0.(\xs)$$. |