From 6327ac306dbfce4d6a9500d61fb11dae4b192f4a Mon Sep 17 00:00:00 2001 From: Egor Tensin Date: Mon, 30 Sep 2019 00:50:28 +0300 Subject: add "Recurring decimals" --- _posts/2019-09-30-recurring-decimals.md | 96 +++++++++++++++++++++++++++++++++ 1 file changed, 96 insertions(+) create mode 100644 _posts/2019-09-30-recurring-decimals.md (limited to '_posts/2019-09-30-recurring-decimals.md') diff --git a/_posts/2019-09-30-recurring-decimals.md b/_posts/2019-09-30-recurring-decimals.md new file mode 100644 index 0000000..83d949c --- /dev/null +++ b/_posts/2019-09-30-recurring-decimals.md @@ -0,0 +1,96 @@ +--- +title: Recurring decimals +layout: post +excerpt: > + Noob thoughts about recurring decimals. +category: Math +mathjax: true +--- +First, let's determine that + +$$ +\newcommand\naturals{\mathbb{N}} +\newcommand\rationals{\mathbb{Q}} +\newcommand\reals{\mathbb{R}} + +\newcommand\xs{x_{1}x_{2}\dots x_n} +\newcommand\nines{\overbrace{99\dots 9}^n} +\newcommand\pq{\frac{p}{q}} +\newcommand\qp{\frac{q}{p}} + +0.(9) = 1 +$$ + +This is counter-intuitive, but demonstrably true. +If $$0.(9) \neq 1$$, then $$\exists n \in \reals: 0.(9) < n < 1$$. +To put it another way, there must be a number greater than 0.(9) and lesser +than 1, equal to neither. +Thinking about it makes it obvious this is not true. + +Slightly more formally, + +$$ +\begin{align*} +1 - 0.9 &= \frac{1}{10} \\ +1 - 0.99 &= \frac{1}{100} \\ +1 - 0.999 &= \frac{1}{10^{-3}} \\ +\dots \\ +1 - 0.\nines &= \frac{1}{10^n} \\ +\end{align*} +$$ + +If $$0.(9) \neq 1$$, the following must hold: + +$$ +\forall n \in \naturals, \exists x \in \reals: x < \frac{1}{10^n} +$$ + +It's clear that the only such number is 0, making 0.(9) and 1 equal. + +Let $$n \in [1,9]$$. +Is there $$\pq \in \rationals: \pq = 0.(n)$$? + +For $$n = 9$$, we've established $$p = 1, q = 1$$. +For the other values of $$n$$ we can observe that + +$$ +\begin{align*} +0.(1) \times 9 &= 0.(9) = 1 \\ +0.(2) \times 9/2 &= 0.(9) = 1 \\ +0.(3) \times 9/3 &= 0.(9) \\ +\dots \\ +0.(8) \times 9/8 &= 0.(9) \\ +0.(9) \times 1 &= 0.(9) +\end{align*} +$$ + +So, + +$$ +\forall n \in [1,9], \frac{n}{9} = 0.(n) +$$ + +In general, let's demonstrate that + +$$ +\forall n \in \naturals, n > 0, \forall 0.(x_{1}x_{2}\dots x_n), \exists \pq \in \rationals: \pq = 0.(\xs) +$$ + +Let $$p = \xs, q =\,\nines$$. +It's clear that + +$$ +\begin{align*} +0.(\xs) \times \qp &= 0.(\xs) \times \frac{\nines}{\xs} \\ +&= \left(\frac{\xs}{10^n} + \frac{\xs}{10^{2n}} + \dots\right) \times \frac{\nines}{\xs} \\ +&= \left(\frac{1}{10^n} + \frac{1}{10^{2n}} + \dots\right) \times\,\nines \\ +&= 0.(9) \\ +&= 1 +\end{align*} +$$ + +Ergo, + +$$ +\pq = 0.(\xs) +$$ -- cgit v1.2.3