aboutsummaryrefslogtreecommitdiffstatshomepage
path: root/plots.html
diff options
context:
space:
mode:
authorEgor Tensin <Egor.Tensin@gmail.com>2016-03-09 01:44:14 +0300
committerEgor Tensin <Egor.Tensin@gmail.com>2016-03-09 01:44:14 +0300
commitbdade319e36621b54907af1af461360e553d3164 (patch)
treec9f9f9dd8cab862b0fdd67fc5507a94a77b925c9 /plots.html
parentgrammar tweaks (diff)
downloadsorting-algorithms-bdade319e36621b54907af1af461360e553d3164.tar.gz
sorting-algorithms-bdade319e36621b54907af1af461360e553d3164.zip
plots: layout & code style tweaks
Diffstat (limited to '')
-rw-r--r--plots.html60
1 files changed, 31 insertions, 29 deletions
diff --git a/plots.html b/plots.html
index 6f50123..481056e 100644
--- a/plots.html
+++ b/plots.html
@@ -118,38 +118,38 @@ plots:
<h1>Plots</h1>
<div class="row">
-<div class="col-xs-12 col-sm-9 col-md-6">
-<p class="text-muted">The goals of this "project" include a) familiarizing
+ <div class="col-xs-12 col-sm-10 col-md-8">
+ <p class="text-muted">The goals of this "project" include a) familiarizing
myself with a few sorting algorithms by examining their (possibly, simplified)
implementations and b) studying the way algorithm's running time changes in
relation to the length of its input (a.k.a. identifying its time
complexity).</p>
-<p class="text-muted">A simple way to visualize the way algorithm's running
+ <p class="text-muted">A simple way to visualize the way algorithm's running
time changes would be to make appropriate measurements and plot them on a nice
graph.
The results of course are highly dependent on the hardware used, while the
graph's look depends on the software used for rendering.</p>
-<p class="text-muted">Both the hardware &amp; the software that were used to
-produce the plots are listed below.</p>
-<table class="table table-bordered">
- <tr>
- <th>CPU</th>
- <td><a href="http://ark.intel.com/products/58917">Intel Atom N2800</a></td>
- </tr>
- <tr>
- <th>OS</th>
- <td>Windows 7 Professional Service Pack 1</td>
- </tr>
- <tr>
- <th>Python</th>
- <td>3.4.1</td>
- </tr>
- <tr>
- <th>matplotlib</th>
- <td>1.4.0</td>
- </tr>
-</table>
-</div>
+ <p class="text-muted">Both the hardware &amp; the software that were used
+to produce the plots are listed below.</p>
+ <table class="table table-bordered reasonable-width">
+ <tr>
+ <th>CPU</th>
+ <td><a href="http://ark.intel.com/products/58917">Intel Atom N2800</a></td>
+ </tr>
+ <tr>
+ <th>OS</th>
+ <td>Windows 7 Professional Service Pack 1</td>
+ </tr>
+ <tr>
+ <th>Python</th>
+ <td>3.4.1</td>
+ </tr>
+ <tr>
+ <th>matplotlib</th>
+ <td>1.4.0</td>
+ </tr>
+ </table>
+ </div>
</div>
{% if page.plots and page.plots != empty %}
@@ -162,13 +162,15 @@ Visit <a href="https://github.com/egor-tensin/sorting_algorithms/">https://githu
<p>In short, each of the implemented algorithms was provided with three
input sequences:</p>
-<ul>
- <li>a list of n consecutive numbers sorted in ascending order ("sorted" input),</li>
- <li>&hellip; in descending order ("reversed" input),</li>
- <li>&hellip; in random order ("randomized" input).</li>
-</ul>
+ <ul>
+ <li>a list of n consecutive numbers sorted in ascending order ("sorted"
+input),</li>
+ <li>&hellip; in descending order ("reversed" input),</li>
+ <li>&hellip; in random order ("randomized" input).</li>
+ </ul>
<p>Use the table below to quickly navigate to the plots for the
corresponding algorithm.</p>
+
<table class="table table-bordered table-hover">
<thead>
<tr>