# Copyright 2016 Egor Tensin # This file is licensed under the terms of the MIT License. # See LICENSE.txt for details. from heapq import * def calc_median_heaps(xs): cur_median = 0.0 min_heap, max_heap = [], [] for x in xs: if x < cur_median: heappush(max_heap, -x) elif x > cur_median or len(max_heap) > len(min_heap): heappush(min_heap, x) else: heappush(max_heap, -x) if len(max_heap) > len(min_heap) + 1: heappush(min_heap, -heappop(max_heap)) elif len(min_heap) > len(max_heap) + 1: heappush(max_heap, -heappop(min_heap)) if len(max_heap) > len(min_heap): cur_median = -max_heap[0] elif len(max_heap) == len(min_heap): cur_median = -max_heap[0] / 2 + min_heap[0] / 2 else: cur_median = min_heap[0] return cur_median def calc_median_sort_first(xs): if not xs: return 0.0 xs.sort() if len(xs) % 2: return xs[len(xs) // 2] else: return xs[len(xs) // 2 - 1] / 2 + xs[len(xs) // 2] / 2 if __name__ == '__main__': import sys xs = list(map(int, sys.argv[1:])) print(calc_median_sort_first(list(xs))) print(calc_median_heaps(list(xs))) else: from algorithms.algorithm import Algorithm _ALGORITHMS = [ Algorithm('median_sort_first', 'Median (input is sorted first)', calc_median_sort_first), Algorithm('median_heaps', 'Median (using heaps)', calc_median_heaps), ]