blob: 8eb775c84bdb5c4d9ee7f83c964d654bdfb99c77 (
plain) (
blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
|
---
title: Main page
layout: plain
groups:
- navbar
navbar_link: <span class="glyphicon glyphicon-th-large"></span> Main page
custom_css:
- plots.css
input_kind:
- best
- average
- worst
plots:
- codename: bubble_sort
brief_name: Bubble sort
display_name: Bubble sort
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var>)
average: O(<var>n</var><sup>2</sup>)
worst: O(<var>n</var><sup>2</sup>)
- codename: bubble_sort_optimized
brief_name: "… \"optimized\""
display_name: "\"Optimized\" bubble sort"
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var>)
average: O(<var>n</var><sup>2</sup>)
worst: O(<var>n</var><sup>2</sup>)
- codename: heapsort
brief_name: Heapsort
display_name: Heapsort
min_length: 0
max_length: 200
iterations: 100
complexity: O(<var>n</var> log <var>n</var>)
- codename: insertion_sort
brief_name: Insertion sort
display_name: Insertion sort
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var>)
average: O(<var>n</var><sup>2</sup>)
worst: O(<var>n</var><sup>2</sup>)
- codename: merge_sort
brief_name: Merge sort
display_name: Merge sort
min_length: 0
max_length: 200
iterations: 100
complexity: O(<var>n</var> log <var>n</var>)
- codename: quicksort_first
brief_name: Quicksort (first element as pivot)
display_name: Quicksort (first element as pivot)
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var><sup>2</sup>)
average: O(<var>n</var> log <var>n</var>)
worst: O(<var>n</var><sup>2</sup>)
- codename: quicksort_second
brief_name: "… second element…"
display_name: Quicksort (second element as pivot)
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var><sup>2</sup>)
average: O(<var>n</var> log <var>n</var>)
worst: O(<var>n</var><sup>2</sup>)
- codename: quicksort_middle
brief_name: "… middle element…"
display_name: Quicksort (middle element as pivot)
min_length: 0
max_length: 200
iterations: 100
complexity: O(<var>n</var> log <var>n</var>)
- codename: quicksort_last
brief_name: "… last element…"
display_name: Quicksort (last element as pivot)
min_length: 0
max_length: 200
iterations: 100
complexity:
best: O(<var>n</var><sup>2</sup>)
average: O(<var>n</var> log <var>n</var>)
worst: O(<var>n</var><sup>2</sup>)
- codename: quicksort_random
brief_name: "… random element…"
display_name: Quicksort (random element as pivot)
min_length: 0
max_length: 200
iterations: 100
complexity: O(<var>n</var> log <var>n</var>)
- codename: selection_sort
brief_name: Selection sort
display_name: Selection sort
min_length: 0
max_length: 200
iterations: 100
complexity: O(<var>n</var><sup>2</sup>)
---
<h1>Sorting algorithms</h1>
<div class="row">
<div class="col-xs-12 col-sm-10 col-md-8">
<p class="text-muted">The goals of this "project" include a) familiarizing
myself with a few sorting algorithms by examining their (possibly, simplified)
implementations and b) studying the way algorithm's running time changes in
relation to the length of its input (a.k.a. identifying its time
complexity).</p>
<p class="text-muted">A simple way to visualize the way algorithm's running
time changes is to make appropriate measurements and plot them on a nice graph.
The results of course are highly dependent on the hardware used, while the
graph's look depends on the software used for rendering.</p>
<p class="text-muted">Both the hardware & the software that were used
to produce the plots are listed below.</p>
<table class="table table-bordered wide-enough">
<tr>
<th>CPU</th>
<td><a href="http://ark.intel.com/products/84695/Intel-Core-i3-5005U-Processor-3M-Cache-2_00-GHz">Intel Core i3-5005U</a></td>
</tr>
<tr>
<th>OS</th>
<td>Windows 8.1</td>
</tr>
<tr>
<th>CPython</th>
<td>3.5.1</td>
</tr>
<tr>
<th>matplotlib</th>
<td>1.5.1</td>
</tr>
</table>
</div>
</div>
{% if page.plots and page.plots != empty %}
<div class="row">
<div class="col-xs-12 col-sm-10 col-md-8">
<p>The table & plots below are just an attempt to nicely lay out the
data generated using the code from the project repository's <code>master</code>
branch.
Visit <a href="{{ site.github.repository_url }}">{{ site.github.repository_url }}</a> for more details.</p>
<p>Each of the implemented algorithms was provided with three input
sequences:</p>
<ul>
<li>a list of <var>n</var> consecutive numbers sorted in ascending order,</li>
<li>… in descending order,</li>
<li>… in random order.</li>
</ul>
<p>Use the table below to quickly navigate to the plots for the
corresponding algorithm.</p>
<table class="table table-bordered table-hover">
<thead>
<tr>
<th class="text-center" rowspan="2">Algorithm</th>
<th class="text-center" colspan="{{ page.input_kind.size }}">Complexity</th>
</tr>
<tr>
{% for input_kind in page.input_kind %}
<th class="text-center">{{ input_kind | capitalize }}</th>
{% endfor %}
</tr>
</thead>
<tbody>
{% for algorithm in page.plots %}
<tr>
<td><a href="#plots_{{ algorithm.codename }}">{{ algorithm.brief_name }}</a></td>
{% for input_kind in page.input_kind %}
{% if algorithm.complexity[input_kind] %}
{% assign complexity = algorithm.complexity[input_kind] %}
{% else %}
{% assign complexity = algorithm.complexity %}
{% endif %}
<td>{{ complexity }}</td>
{% endfor %}
</tr>
{% endfor %}
</tbody>
</table>
</div>
</div>
{% for algorithm in page.plots %}
<a id="plots_{{ algorithm.codename }}"></a>
<h3>{{ algorithm.display_name }}</h3>
<div class="row">
{% for input_kind in page.input_kind %}
{% if algorithm.iterations[input_kind] %}
{% assign iterations = algorithm.iterations[input_kind] %}
{% else %}
{% assign iterations = algorithm.iterations %}
{% endif %}
{% if algorithm.complexity[input_kind] %}
{% assign complexity = algorithm.complexity[input_kind] %}
{% else %}
{% assign complexity = algorithm.complexity %}
{% endif %}
{% capture stem %}{{ algorithm.codename }}_{{ iterations }}_{{ input_kind }}_{{ algorithm.min_length }}_{{ algorithm.max_length }}{% endcapture %}
<div class="col-xs-12 col-sm-6 col-md-4">
<div class="thumbnail">
<a class="thumbnail" href="{{ site.baseurl }}/img/plots/full_size/{{ stem }}.png">
<img class="img-responsive" src="{{ site.baseurl }}/img/plots/preview/{{ stem }}.png" alt="{{ algorithm.display_name | escape }}, {{ iterations }} iterations, {{ input_kind }} case"/>
</a>
<div class="caption">
<strong>{{ algorithm.display_name }}</strong><br/>
{{ input_kind | capitalize }} case, {{ complexity }}
</div>
</div>
</div>
{% endfor %}
</div>
{% endfor %}
{% else %}
<p class="h3">Sorry, no plots have been added yet.</p>
<hr/>
{% endif %}
|