1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
|
# Copyright 2015 Egor Tensin <Egor.Tensin@gmail.com>
# This file is licensed under the terms of the MIT License.
# See LICENSE.txt for details.
from enum import Enum
import gc
import pylab
from time import clock
class OrderType(Enum):
ASCENDING, RANDOM, DESCENDING = 'ascending', 'random', 'descending'
def __str__(self):
return self.value
def get_case(self):
if self is OrderType.ASCENDING:
return 'best'
elif self is OrderType.DESCENDING:
return 'worst'
elif self is OrderType.RANDOM:
return 'average'
else:
raise NotImplementedError(
'unknown "case" for input ordering: \'{}\''.format(self))
def get_timestamp():
return clock()
def init_clock():
get_timestamp()
def gen_input(order, n):
if order is OrderType.ASCENDING:
return list(range(n))
elif order is OrderType.DESCENDING:
return sorted(range(n), reverse=True)
elif order is OrderType.RANDOM:
from random import sample
return sample(range(n), n)
else:
raise NotImplementedError(
'invalid input ordering: \'{}\''.format(order))
def measure_running_time(algorithm, order, xs_len, iterations):
xs = gen_input(order, xs_len)
xss = [list(xs) for _ in range(iterations)]
algorithm = algorithm.get_function()
gc.disable()
started_at = get_timestamp()
for i in range(iterations):
algorithm(xss[i])
finished_at = get_timestamp()
gc.enable()
return finished_at - started_at
def _decorate_plot(algorithm, iterations, order):
pylab.grid()
pylab.xlabel("Input length")
pylab.ylabel('Running time (sec), {} iteration(s)'.format(iterations))
pylab.title("{}, {} case".format(
algorithm.get_display_name(), order.get_case()))
def plot_algorithm(algorithm, iterations, order, min_len, max_len, output_path=None):
_decorate_plot(algorithm, iterations, order)
xs_lengths = range(min_len, max_len + 1)
running_time = []
for xs_len in xs_lengths:
running_time.append(measure_running_time(algorithm, order, xs_len, iterations))
pylab.plot(xs_lengths, running_time)
if output_path is None:
pylab.show()
else:
pylab.savefig(output_path)
if __name__ == '__main__':
import algorithms.registry
def natural_number(s):
n = int(s)
if n < 0:
raise argparse.ArgumentTypeError('cannot be negative')
return n
def positive_number(s):
n = int(s)
if n < 1:
raise argparse.ArgumentTypeError('must be positive')
return n
def input_kind(s):
try:
return OrderType(s)
except ValueError:
raise argparse.ArgumentError()
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--algorithm', '-l', required=True,
choices=algorithms.registry.get_codenames(),
help='specify sorting algorithm to use')
parser.add_argument('--iterations', '-r',
type=positive_number, default=1,
help='set number of algorithm iterations')
parser.add_argument('--order', '-i',
choices=tuple(x for x in OrderType),
type=input_kind, default=OrderType.RANDOM,
help='specify input order')
parser.add_argument('--min', '-a', type=natural_number,
required=True, dest='min_len',
help='set min input length')
parser.add_argument('--max', '-b', type=natural_number,
required=True, dest='max_len',
help='set max input length')
parser.add_argument('--output', '-o', dest='output_path',
help='set plot output path')
args = parser.parse_args()
if args.max_len < args.min_len:
parser.error('max input length cannot be less than min input length')
init_clock()
plot_algorithm(algorithms.registry.get(args.algorithm),
args.iterations, args.order,
args.min_len, args.max_len,
args.output_path)
|