1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
# Copyright 2015 Egor Tensin <Egor.Tensin@gmail.com>
# This file is licensed under the terms of the MIT License.
# See LICENSE.txt for details.
from enum import Enum
import gc
from time import clock
class InputKind(Enum):
SORTED, RANDOMIZED, REVERSED = 'sorted', 'randomized', 'reversed'
def __str__(self):
return self.value
def get_timestamp():
return clock()
def init_clock():
get_timestamp()
def gen_input(kind, n):
if kind is InputKind.SORTED:
return list(range(n))
elif kind is InputKind.REVERSED:
return sorted(range(n), reverse=True)
elif kind is InputKind.RANDOMIZED:
from random import sample
return sample(range(n), n)
else:
raise NotImplementedError(
'invalid initial input state \'{}\''.format(kind))
def measure_running_time(algorithm, kind, xs_len, repetitions):
xs = gen_input(kind, xs_len)
xss = [list(xs) for _ in range(repetitions)]
algorithm = algorithm.get_function()
gc.disable()
started_at = get_timestamp()
for i in range(repetitions):
algorithm(xss[i])
finished_at = get_timestamp()
gc.enable()
return finished_at - started_at
def _decorate_plot(algorithm, repetitions, kind, plt):
plt.grid()
plt.xlabel('Input length')
plt.ylabel('Running time (sec)')
plt.title('{}, {} repetition(s), {} input'.format(
algorithm.get_display_name(), repetitions, kind))
def plot_algorithm(algorithm, repetitions, kind, min_len, max_len, output_path=None):
import matplotlib.pyplot as plt
_decorate_plot(algorithm, repetitions, kind, plt)
xs_lengths = range(min_len, max_len + 1)
running_time = []
for xs_len in xs_lengths:
running_time.append(measure_running_time(algorithm, kind, xs_len, repetitions))
plt.plot(xs_lengths, running_time)
if output_path is None:
plt.show()
else:
plt.savefig(output_path)
if __name__ == '__main__':
import algorithms.registry
def natural_number(s):
n = int(s)
if n < 0:
raise argparse.ArgumentTypeError('cannot be negative')
return n
def positive_number(s):
n = int(s)
if n < 1:
raise argparse.ArgumentTypeError('must be positive')
return n
def input_kind(s):
try:
return InputKind(s)
except ValueError:
raise argparse.ArgumentError()
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--algorithm', '-l', required=True,
choices=algorithms.registry.get_codenames(),
help='specify sorting algorithm to use')
parser.add_argument('--repetitions', '-r',
type=positive_number, default=1,
help='set number of sorting repetitions')
parser.add_argument('--input', '-i',
choices=tuple(x for x in InputKind),
type=input_kind, default=InputKind.RANDOMIZED,
help='choose initial input state')
parser.add_argument('--min', '-a', type=natural_number,
required=True, dest='min_len',
help='set min input length')
parser.add_argument('--max', '-b', type=natural_number,
required=True, dest='max_len',
help='set max input length')
parser.add_argument('--output', '-o', dest='output_path',
help='set plot output path')
args = parser.parse_args()
if args.max_len < args.min_len:
parser.error('max input length cannot be less than min input length')
init_clock()
plot_algorithm(algorithms.registry.get(args.algorithm),
args.repetitions, args.input,
args.min_len, args.max_len,
args.output_path)
|